

excelrd documentation

excelrd is a library for reading data and formatting information from Excel
files, whether they are .xls or .xlsx files.

	Handling of Unicode

	Dates in Excel spreadsheets

	Named references, constants, formulas, and macros

	Formatting information in Excel Spreadsheets

	Loading worksheets on demand

	XML vulnerabilities and Excel files

	API Reference

You may also wish to consult the tutorial [https://github.com/python-excel/tutorial].

For details of how to install the package or get involved in its
development, please see the sections below:

	Development

	Changes

	Acknowledgements

	Licenses

Indices and tables

	Index

	Module Index

	Search Page

Handling of Unicode

This package presents all text strings as Python unicode objects.
From Excel 97 onwards, text in Excel spreadsheets has been stored as UTF-16LE [http://unicode.org/faq/utf_bom.html/]
(a 16-bit Unicode Transformation Format).
Older files (Excel 95 and earlier) don’t keep strings in Unicode;
a CODEPAGE record provides a codepage number (for example, 1252) which is
used by excelrd to derive the encoding (for same example: “cp1252”) which is
used to translate to Unicode.

If the CODEPAGE record is missing (possible if the file was created
by third-party software), excelrd will assume that the encoding is ascii,
and keep going. If the actual encoding is not ascii, a
UnicodeDecodeError exception will be raised and
you will need to determine the encoding yourself, and tell excelrd:

book = excelrd.open_workbook(..., encoding_override="cp1252")

If the CODEPAGE record exists but is wrong (for example, the codepage
number is 1251, but the strings are actually encoded in koi8_r),
it can be overridden using the same mechanism.

The supplied runxlrd.py has a corresponding command-line argument, which
may be used for experimentation:

runxlrd.py -e koi8_r 3rows myfile.xls

The first place to look for an encoding, the “codec name”, is
the Python documentation [https://docs.python.org/library/codecs.html#standard-encodings].

Dates in Excel spreadsheets

In reality, there are no such things. What you have are floating point
numbers and pious hope.
There are several problems with Excel dates:

	Dates are not stored as a separate data type; they are stored as
floating point numbers and you have to rely on:

	the “number format” applied to them in Excel and/or

	knowing which cells are supposed to have dates in them.

This module helps with the former by inspecting the
format that has been applied to each number cell;
if it appears to be a date format, the cell
is classified as a date rather than a number.

Feedback on this feature, especially from non-English-speaking locales,
would be appreciated.

	Excel for Windows stores dates by default as the number of
days (or fraction thereof) since 1899-12-31T00:00:00. Excel for
Macintosh uses a default start date of 1904-01-01T00:00:00.

The date system can be changed in Excel on a per-workbook basis (for example:
Tools -> Options -> Calculation, tick the “1904 date system” box).
This is of course a bad idea if there are already dates in the
workbook. There is no good reason to change it even if there are no
dates in the workbook.

Which date system is in use is recorded in the
workbook. A workbook transported from Windows to Macintosh (or vice
versa) will work correctly with the host Excel.

When using this package’s xldate_as_tuple() function to convert numbers
from a workbook, you must use the datemode attribute of
the Book object. If you guess, or make a judgement depending
on where you believe the workbook was created, you run the risk of being 1462
days out of kilter.

Reference:
https://support.microsoft.com/en-us/help/180162/xl-the-1900-date-system-vs.-the-1904-date-system

	The Excel implementation of the Windows-default 1900-based date system
works on the incorrect premise that 1900 was a leap year. It interprets the
number 60 as meaning 1900-02-29, which is not a valid date.

Consequently, any number less than 61 is ambiguous. For example, is 59 the
result of 1900-02-28 entered directly, or is it 1900-03-01 minus 2
days?

The OpenOffice.org Calc program “corrects” the Microsoft problem;
entering 1900-02-27 causes the number 59 to be stored.
Save as an XLS file, then open the file with Excel and you’ll see
1900-02-28 displayed.

Reference: https://support.microsoft.com/en-us/help/214326/excel-incorrectly-assumes-that-the-year-1900-is-a-leap-year

	The Macintosh-default 1904-based date system counts 1904-01-02 as day 1
and 1904-01-01 as day zero. Thus any number such that
(0.0 <= number < 1.0) is ambiguous. Is 0.625 a time of day
(15:00:00), independent of the calendar, or should it be interpreted as
an instant on a particular day (1904-01-01T15:00:00)?

The functions in xldate take the view that such a number is a
calendar-independent time of day (like Python’s datetime.time type)
for both date systems. This is consistent with more recent Microsoft
documentation. For example, the help file for Excel 2002, which says that the
first day in the 1904 date system is 1904-01-02.

	Usage of the Excel DATE() function may leave strange dates in a
spreadsheet. Quoting the help file in respect of the 1900 date system:

If year is between 0 (zero) and 1899 (inclusive),
Excel adds that value to 1900 to calculate the year.
For example, DATE(108,1,2) returns January 2, 2008 (1900+108).

This gimmick, semi-defensible only for arguments up to 99 and only in the
pre-Y2K-awareness era, means that DATE(1899, 12, 31) is interpreted as
3799-12-31.

For further information, please refer to the documentation for the
functions in xldate.

Named references, constants, formulas, and macros

A name is used to refer to a cell, a group of cells, a constant
value, a formula, or a macro. Usually the scope of a name is global
across the whole workbook. However it can be local to a worksheet.
For example, if the sales figures are in different cells in
different sheets, the user may define the name “Sales” in each
sheet. There are built-in names, like “Print_Area” and
“Print_Titles”; these two are naturally local to a sheet.

To inspect the names with a user interface like MS Excel, OOo Calc,
or Gnumeric, click on Insert -> Names -> Define. This will show the global
names, plus those local to the currently selected sheet.

A Book object provides two dictionaries (Book.name_map and
Book.name_and_scope_map) and a list (Book.name_obj_list) which
allow various ways of accessing the Name objects.
There is one Name object for each NAME record found in the workbook.
Name objects have many attributes, several of which are relevant only
when obj.macro is 1.

In the examples directory you will find namesdemo.xls which
showcases the many different ways that names can be used, and
xlrdnamesAPIdemo.py which offers 3 different queries for inspecting
the names in your files, and shows how to extract whatever a name is
referring to. There is currently one “convenience method”,
Name.cell(), which extracts the value in the case where the name
refers to a single cell. The source code for Name.cell() is an extra
source of information on how the Name attributes hang together.

Note

Name information is not extracted from files older than
Excel 5.0 (Book.biff_version < 50).

Formatting information in Excel Spreadsheets

Introduction

This collection of features, new in excelrd version 0.6.1, is intended
to provide the information needed to:

	display/render spreadsheet contents (say) on a screen or in a PDF file

	copy spreadsheet data to another file without losing the ability to
display/render it.

The Palette; Colour Indexes

A colour is represented in Excel as a (red, green, blue) (“RGB”) tuple
with each component in range(256). However it is not possible to access an
unlimited number of colours; each spreadsheet is limited to a palette of 64
different colours (24 in Excel 3.0 and 4.0, 8 in Excel 2.0).
Colours are referenced by an index (“colour index”) into this palette.

Colour indexes 0 to 7 represent 8 fixed built-in colours:
black, white, red, green, blue, yellow, magenta, and cyan.

The remaining colours in the palette (8 to 63 in Excel 5.0 and later)
can be changed by the user. In the Excel 2003 UI,
Tools -> Options -> Color presents a palette
of 7 rows of 8 colours. The last two rows are reserved for use in charts.

The correspondence between this grid and the assigned
colour indexes is NOT left-to-right top-to-bottom.

Indexes 8 to 15 correspond to changeable
parallels of the 8 fixed colours – for example, index 7 is forever cyan;
index 15 starts off being cyan but can be changed by the user.

The default colour for each index depends on the file version; tables of the
defaults are available in the source code. If the user changes one or more
colours, a PALETTE record appears in the XLS file – it gives the RGB values
for all changeable
indexes.

Note that colours can be used in “number formats”: [CYAN].... and
[COLOR8].... refer to colour index 7; [COLOR16].... will produce cyan
unless the user changes colour index 15 to something else.

In addition, there are several “magic” colour indexes used by Excel:

	0x18 (BIFF3-BIFF4), 0x40 (BIFF5-BIFF8):
	System window text colour for border lines (used in XF, CF, and
WINDOW2 records)

	0x19 (BIFF3-BIFF4), 0x41 (BIFF5-BIFF8):
	System window background colour for pattern background (used in XF and
CF records)

	0x43:
	System face colour (dialogue background colour)

	0x4D:
	System window text colour for chart border lines

	0x4E:
	System window background colour for chart areas

	0x4F:
	Automatic colour for chart border lines (seems to be always Black)

	0x50:
	System ToolTip background colour (used in note objects)

	0x51:
	System ToolTip text colour (used in note objects)

	0x7FFF:
	System window text colour for fonts (used in FONT and CF records).

Note

0x7FFF appears to be the default colour index.
It appears quite often in FONT records.

Default Formatting

Default formatting is applied to all empty cells (those not described by a cell
record):

	Firstly, row default information (ROW record, Rowinfo
class) is used if available.

	Failing that, column default information (COLINFO record,
Colinfo class) is used if available.

	As a last resort the worksheet/workbook default cell format will be used; this
should always be present in an Excel file,
described by the XF record with the fixed index 15 (0-based).
By default, it uses the worksheet/workbook default cell style,
described by the very first XF record (index 0).

Formatting features not included in excelrd

	Asian phonetic text (known as “ruby”), used for Japanese furigana.
See OOo docs s3.4.2 (p15)

	Conditional formatting. See OOo docs s5.12, s6.21 (CONDFMT record), s6.16
(CF record)

	Miscellaneous sheet-level and book-level items, e.g. printing layout,
screen panes.

	Modern Excel file versions don’t keep most of the built-in
“number formats” in the file; Excel loads formats according to the
user’s locale. Currently, excelrd’s emulation of this is limited to
a hard-wired table that applies to the US English locale. This may mean
that currency symbols, date order, thousands separator, decimals separator,
etc are inappropriate.

Note

This does not affect users who are copying XLS
files, only those who are visually rendering cells.

Loading worksheets on demand

This feature, new in version 0.7.1, is governed by the on_demand argument
to the open_workbook() function and allows saving memory and time by
loading only those sheets that the caller is interested in, and releasing sheets
when no longer required.

	on_demand=False (default):
	No change. open_workbook() loads global data
and all sheets, releases resources no longer required (principally the
str or mmap.mmap object containing the Workbook stream),
and returns.

	on_demand=True and BIFF version < 5.0:
	A warning message is emitted,
on_demand is recorded as False, and the old process is followed.

	on_demand=True and BIFF version >= 5.0:
	open_workbook() loads global
data and returns without releasing resources. At this stage, the only
information available about sheets is Book.nsheets and
Book.sheet_names().

Book.sheet_by_name() and Book.sheet_by_index() will load the
requested sheet if it is not already loaded.

Book.sheets() will load all unloaded sheets.

The caller may save memory by calling
Book.unload_sheet() when finished with the sheet.
This applies irrespective of the state of on_demand.

The caller may re-load an unloaded sheet by calling Book.sheet_by_name()
or Book.sheet_by_index(), except if the required resources have been
released (which will
have happened automatically when on_demand is false). This is the only
case where an exception will be raised.

The caller may query the state of a sheet using Book.sheet_loaded().

Book.release_resources() may used to save memory and close
any memory-mapped file before proceeding to examine already-loaded
sheets. Once resources are released, no further sheets can be loaded.

When using on-demand, it is advisable to ensure that
Book.release_resources() is always called, even if an exception
is raised in your own code; otherwise if the input file has been
memory-mapped, the mmap.mmap object will not be closed and you will
not be able to access the physical file until your Python process
terminates. This can be done by calling Book.release_resources()
explicitly in the finally part of a try/finally block.

The Book object is also a context manager, so you can wrap your code in a
with statement that will make sure underlying resources are closed.

XML vulnerabilities and Excel files

If your code ingests .xlsx files that come from sources in which you do not
have absolute trust, please be aware that .xlsx files are made up of XML
and, as such, are susceptible to the vulnerabilities of XML.

excelrd uses ElementTree to parse XML, but as you’ll find if you look into it,
there are many different ElementTree implementations. A good summary
of vulnerabilities you should worry can be found here:
xml-vulnerabilities.

For clarity, excelrd will try and import ElementTree from the following sources.
The list is in priority order, with those earlier in the list being preferred
to those later in the list:

	xml.etree.cElementTree [https://docs.python.org/2/library/xml.etree.elementtree.html]

	cElementTree [http://effbot.org/zone/celementtree.htm]

	lxml.etree [http://lxml.de/api/lxml.etree-module.html]

	xml.etree.ElementTree [https://docs.python.org/2/library/xml.etree.elementtree.html]

	elementtree.ElementTree [http://effbot.org/zone/element-index.htm]

To guard against these problems, you should consider the defusedxml [https://pypi.org/project/defusedxml/]
project which can be used as follows:

import defusedxml
from defusedxml.common import EntitiesForbidden
from excelrd import open_workbook
defusedxml.defuse_stdlib()

def secure_open_workbook(**kwargs):
 try:
 return open_workbook(**kwargs)
 except EntitiesForbidden:
 raise ValueError('Please use a xlsx file without XEE')

API Reference

excelrd

	
excelrd.count_records(filename, outfile=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)

	For debugging and analysis: summarise the file’s BIFF records.
ie: produce a sorted file of (record_name, count).

	Parameters:

	
	filename – The path to the file to be summarised.

	outfile – An open file, to which the summary is written.

	
excelrd.dump(filename, outfile=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, unnumbered=False)

	For debugging: dump an XLS file’s BIFF records in char & hex.

	Parameters:

	
	filename – The path to the file to be dumped.

	outfile – An open file, to which the dump is written.

	unnumbered – If true, omit offsets (for meaningful diffs).

	
excelrd.open_workbook(filename=None, logfile=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, verbosity=0, use_mmap=1, file_contents=None, encoding_override=None, formatting_info=False, on_demand=False, ragged_rows=False, ignore_workbook_corruption=False)

	Open a spreadsheet file for data extraction.

	Parameters:

	
	filename – The path to the spreadsheet file to be opened.

	logfile – An open file to which messages and diagnostics are written.

	verbosity – Increases the volume of trace material written to the
logfile.

	use_mmap – Whether to use the mmap module is determined heuristically.
Use this arg to override the result.

Current heuristic: mmap is used if it exists.

	file_contents – A string or an mmap.mmap object or some other behave-alike
object. If file_contents is supplied, filename will not be used,
except (possibly) in messages.

	encoding_override – Used to overcome missing or bad codepage information
in older-version files. See Handling of Unicode.

	formatting_info – The default is False, which saves memory.
In this case, “Blank” cells, which are those with their own formatting
information but no data, are treated as empty by ignoring the file’s
BLANK and MULBLANK records.
This cuts off any bottom or right “margin” of rows of empty or blank
cells.
Only cell_value() and
cell_type() are available.

When True, formatting information will be read from the spreadsheet
file. This provides all cells, including empty and blank cells.
Formatting information is available for each cell.

Note that this will raise a NotImplementedError when used with an
xlsx file.

	on_demand – Governs whether sheets are all loaded initially or when demanded
by the caller. See Loading worksheets on demand.

	ragged_rows – The default of False means all rows are padded out with empty cells so
that all rows have the same size as found in
ncols.

True means that there are no empty cells at the ends of rows.
This can result in substantial memory savings if rows are of widely
varying sizes. See also the row_len() method.

	ignore_workbook_corruption – This option allows to read corrupted workbooks.
When False you may face CompDocError: Workbook corruption.
When True that exception will be ignored.

	Returns:

	An instance of the Book class.

excelrd.biffh

	
class excelrd.biffh.BaseObject

	Parent of almost all other classes in the package. Defines a common
dump() method for debugging.

	
dump(f=None, header=None, footer=None, indent=0)

	
	Parameters:

	
	f – open file object, to which the dump is written

	header – text to write before the dump

	footer – text to write after the dump

	indent – number of leading spaces (for recursive calls)

	
exception excelrd.biffh.XLRDError

	An exception indicating problems reading data from an Excel file.

	
excelrd.biffh.error_text_from_code = {0: '#NULL!', 7: '#DIV/0!', 15: '#VALUE!', 23: '#REF!', 29: '#NAME?', 36: '#NUM!', 42: '#N/A'}

	This dictionary can be used to produce a text version of the internal codes
that Excel uses for error cells.

	
excelrd.biffh.unpack_unicode(data, pos, lenlen=2)

	Return unicode_strg

	
excelrd.biffh.unpack_unicode_update_pos(data, pos, lenlen=2, known_len=None)

	Return (unicode_strg, updated value of pos)

excelrd.book

	
class excelrd.book.Book

	Contents of a “workbook”.

Warning

You should not instantiate this class yourself. You use the Book
object that was returned when you called open_workbook().

	
biff_version = 0

	Version of BIFF (Binary Interchange File Format) used to create the file.
Latest is 8.0 (represented here as 80), introduced with Excel 97.
Earliest supported by this module: 2.0 (represented as 20).

	
codepage = None

	An integer denoting the character set used for strings in this file.
For BIFF 8 and later, this will be 1200, meaning Unicode;
more precisely, UTF_16_LE.
For earlier versions, this is used to derive the appropriate Python
encoding to be used to convert to Unicode.
Examples: 1252 -> 'cp1252', 10000 -> 'mac_roman'

	
colour_map = {}

	This provides definitions for colour indexes. Please refer to
The Palette; Colour Indexes for an explanation
of how colours are represented in Excel.

Colour indexes into the palette map into (red, green, blue) tuples.
“Magic” indexes e.g. 0x7FFF map to None.

colour_map is what you need if you want to render cells on screen
or in a PDF file. If you are writing an output XLS file, use
palette_record.

Note

Extracted only if open_workbook(..., formatting_info=True)

New in version 0.6.1.

	
countries = (0, 0)

	A tuple containing the telephone country code for:

	[0]:
	the user-interface setting when the file was created.

	[1]:
	the regional settings.

Example: (1, 61) meaning (USA, Australia).

This information may give a clue to the correct encoding for an
unknown codepage. For a long list of observed values, refer to the
OpenOffice.org documentation for the COUNTRY record.

	
datemode = 0

	Which date system was in force when this file was last saved.

	0:
	1900 system (the Excel for Windows default).

	1:
	1904 system (the Excel for Macintosh default).

Defaults to 0 in case it’s not specified in the file.

	
encoding = None

	The encoding that was derived from the codepage.

	
font_list = []

	A list of Font class instances,
each corresponding to a FONT record.

New in version 0.6.1.

	
format_list = []

	A list of Format objects, each corresponding to
a FORMAT record, in the order that they appear in the input file.
It does not contain builtin formats.

If you are creating an output file using (for example) xlwt,
use this list.

The collection to be used for all visual rendering purposes is
format_map.

New in version 0.6.1.

	
format_map = {}

	The mapping from format_key to
Format object.

New in version 0.6.1.

	
load_time_stage_1 = -1.0

	Time in seconds to extract the XLS image as a contiguous string
(or mmap equivalent).

	
load_time_stage_2 = -1.0

	Time in seconds to parse the data from the contiguous string
(or mmap equivalent).

	
name_and_scope_map = {}

	
	A mapping from (lower_case_name, scope) to a single Name
	object.

New in version 0.6.0.

	
name_map = {}

	A mapping from lower_case_name to a list of Name objects.
The list is sorted in scope order. Typically there will be one item
(of global scope) in the list.

New in version 0.6.0.

	
name_obj_list = []

	List containing a Name object for each NAME record in the
workbook.

New in version 0.6.0.

	
nsheets = 0

	The number of worksheets present in the workbook file.
This information is available even when no sheets have yet been loaded.

	
palette_record = []

	If the user has changed any of the colours in the standard palette, the
XLS file will contain a PALETTE record with 56 (16 for Excel 4.0 and
earlier) RGB values in it, and this list will be e.g.
[(r0, b0, g0), ..., (r55, b55, g55)].
Otherwise this list will be empty. This is what you need if you are
writing an output XLS file. If you want to render cells on screen or in a
PDF file, use colour_map.

Note

Extracted only if open_workbook(..., formatting_info=True)

New in version 0.6.1.

	
release_resources()

	This method has a dual purpose. You can call it to release
memory-consuming objects and (possibly) a memory-mapped file
(mmap.mmap object) when you have finished loading sheets in
on_demand mode, but still require the Book object to
examine the loaded sheets. It is also called automatically (a) when
open_workbook()
raises an exception and (b) if you are using a with statement, when
the with block is exited. Calling this method multiple times on the
same object has no ill effect.

	
sheet_by_index(sheetx)

	
	Parameters:

	sheetx – Sheet index in range(nsheets)

	Returns:

	A Sheet.

	
sheet_by_name(sheet_name)

	
	Parameters:

	sheet_name – Name of the sheet required.

	Returns:

	A Sheet.

	
sheet_loaded(sheet_name_or_index)

	
	Parameters:

	sheet_name_or_index – Name or index of sheet enquired upon

	Returns:

	True if sheet is loaded, False otherwise.

New in version 0.7.1.

	
sheet_names()

	
	Returns:

	A list of the names of all the worksheets in the workbook file.
This information is available even when no sheets have yet been
loaded.

	
sheets()

	
	Returns:

	A list of all sheets in the book.

All sheets not already loaded will be loaded.

	
style_name_map = {}

	This provides access via name to the extended format information for
both built-in styles and user-defined styles.

It maps name to (built_in, xf_index), where
name is either the name of a user-defined style,
or the name of one of the built-in styles. Known built-in names are
Normal, RowLevel_1 to RowLevel_7,
ColLevel_1 to ColLevel_7, Comma, Currency, Percent, “Comma [0]”,
“Currency [0]”, Hyperlink, and “Followed Hyperlink”.

built_in has the following meanings

	1:
	built-in style

	0:
	user-defined

xf_index is an index into Book.xf_list.

References: OOo docs s6.99 (STYLE record); Excel UI Format/Style

New in version 0.6.1.

Extracted only if open_workbook(..., formatting_info=True)

New in version 0.7.4.

	
unload_sheet(sheet_name_or_index)

	
	Parameters:

	sheet_name_or_index – Name or index of sheet to be unloaded.

New in version 0.7.1.

	
user_name = ''

	What (if anything) is recorded as the name of the last user to
save the file.

	
xf_list = []

	A list of XF class instances,
each corresponding to an XF record.

New in version 0.6.1.

	
class excelrd.book.Name

	Information relating to a named reference, formula, macro, etc.

Note

Name information is not extracted from files older than
Excel 5.0 (Book.biff_version < 50)

	
area2d(clipped=True)

	This is a convenience method for the use case where the name
refers to one rectangular area in one worksheet.

	Parameters:

	clipped – If True, the default, the returned rectangle is clipped
to fit in (0, sheet.nrows, 0, sheet.ncols).
it is guaranteed that 0 <= rowxlo <= rowxhi <= sheet.nrows and
that the number of usable rows in the area (which may be zero) is
rowxhi - rowxlo; likewise for columns.

	Returns:

	a tuple (sheet_object, rowxlo, rowxhi, colxlo, colxhi).

	Raises:

	excelrd.biffh.XLRDError – The name is not a constant absolute reference
to a single area in a single sheet.

	
binary = 0

	0 = Formula definition; 1 = Binary data

Note

No examples have been sighted.

	
builtin = 0

	0 = User-defined name; 1 = Built-in name

Common examples: Print_Area, Print_Titles; see OOo docs for
full list

	
cell()

	This is a convenience method for the frequent use case where the name
refers to a single cell.

	Returns:

	An instance of the Cell class.

	Raises:

	excelrd.biffh.XLRDError – The name is not a constant absolute reference
to a single cell.

	
complex = 0

	0 = Simple formula; 1 = Complex formula (array formula or user defined).

Note

No examples have been sighted.

	
func = 0

	0 = Command macro; 1 = Function macro. Relevant only if macro == 1

	
funcgroup = 0

	Function group. Relevant only if macro == 1; see OOo docs for values.

	
hidden = 0

	0 = Visible; 1 = Hidden

	
macro = 0

	0 = Standard name; 1 = Macro name

	
name_index = 0

	The index of this object in book.name_obj_list

	
raw_formula = b''

	An 8-bit string.

	
scope = -1

	
	-1:
	The name is global (visible in all calculation sheets).

	-2:
	The name belongs to a macro sheet or VBA sheet.

	-3:
	The name is invalid.

	0 <= scope < book.nsheets:
	The name is local to the sheet whose index is scope.

	
vbasic = 0

	0 = Sheet macro; 1 = VisualBasic macro. Relevant only if macro == 1

	
excelrd.book.unpack_SST_table(datatab, nstrings)

	Return list of strings

excelrd.compdoc

Implements the minimal functionality required
to extract a “Workbook” or “Book” stream (as one big string)
from an OLE2 Compound Document file.

	
class excelrd.compdoc.CompDoc(mem, logfile=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, DEBUG=0, ignore_workbook_corruption=False)

	Compound document handler.

	Parameters:

	mem – The raw contents of the file, as a string, or as an mmap.mmap
object. The only operation it needs to support is slicing.

	
get_named_stream(qname)

	Interrogate the compound document’s directory; return the stream as a
string if found, otherwise return None.

	Parameters:

	qname – Name of the desired stream e.g. 'Workbook'.
Should be in Unicode or convertible thereto.

	
locate_named_stream(qname)

	Interrogate the compound document’s directory.

If the named stream is not found, (None, 0, 0) will be returned.

If the named stream is found and is contiguous within the original
byte sequence (mem) used when the document was opened,
then (mem, offset_to_start_of_stream, length_of_stream) is returned.

Otherwise a new string is built from the fragments and
(new_string, 0, length_of_stream) is returned.

	Parameters:

	qname – Name of the desired stream e.g. 'Workbook'.
Should be in Unicode or convertible thereto.

	
exception excelrd.compdoc.CompDocError

	

	
excelrd.compdoc.SIGNATURE = b'\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1'

	Magic cookie that should appear in the first 8 bytes of the file.

excelrd.formatting

Module for formatting information.

	
class excelrd.formatting.EqNeAttrs

	This mixin class exists solely so that Format, Font, and
XF objects can be compared by value of their attributes.

	
class excelrd.formatting.Font

	An Excel “font” contains the details of not only what is normally
considered a font, but also several other display attributes.
Items correspond to those in the Excel UI’s Format -> Cells -> Font tab.

New in version 0.6.1.

	
bold = 0

	1 = Characters are bold. Redundant; see “weight” attribute.

	
character_set = 0

	Values:

0 = ANSI Latin
1 = System default
2 = Symbol,
77 = Apple Roman,
128 = ANSI Japanese Shift-JIS,
129 = ANSI Korean (Hangul),
130 = ANSI Korean (Johab),
134 = ANSI Chinese Simplified GBK,
136 = ANSI Chinese Traditional BIG5,
161 = ANSI Greek,
162 = ANSI Turkish,
163 = ANSI Vietnamese,
177 = ANSI Hebrew,
178 = ANSI Arabic,
186 = ANSI Baltic,
204 = ANSI Cyrillic,
222 = ANSI Thai,
238 = ANSI Latin II (Central European),
255 = OEM Latin I

	
colour_index = 0

	An explanation of “colour index” is given in The Palette; Colour Indexes.

	
escapement = 0

	1 = Superscript, 2 = Subscript.

	
family = 0

	Values:

0 = None (unknown or don't care)
1 = Roman (variable width, serifed)
2 = Swiss (variable width, sans-serifed)
3 = Modern (fixed width, serifed or sans-serifed)
4 = Script (cursive)
5 = Decorative (specialised, for example Old English, Fraktur)

	
font_index = 0

	The 0-based index used to refer to this Font() instance.
Note that index 4 is never used; excelrd supplies a dummy place-holder.

	
height = 0

	Height of the font (in twips). A twip = 1/20 of a point.

	
italic = 0

	1 = Characters are italic.

	
name = ''

	"Arial".

	Type:

	The name of the font. Example

	
outline = 0

	1 = Font is outline style (Macintosh only)

	
shadow = 0

	1 = Font is shadow style (Macintosh only)

	
struck_out = 0

	1 = Characters are struck out.

	
underline_type = 0

	Values:

0 = None
1 = Single; 0x21 (33) = Single accounting
2 = Double; 0x22 (34) = Double accounting

	
underlined = 0

	1 = Characters are underlined. Redundant; see
underline_type attribute.

	
weight = 400

	Font weight (100-1000). Standard values are 400 for normal text
and 700 for bold text.

	
class excelrd.formatting.Format(format_key, ty, format_str)

	“Number format” information from a FORMAT record.

New in version 0.6.1.

	
format_key = 0

	The key into format_map

	
format_str = ''

	The format string

	
type = 0

	A classification that has been inferred from the format string.
Currently, this is used only to distinguish between numbers and dates.
Values:

FUN = 0 # unknown
FDT = 1 # date
FNU = 2 # number
FGE = 3 # general
FTX = 4 # text

	
class excelrd.formatting.XF

	eXtended Formatting information for cells, rows, columns and styles.

Each of the 6 flags below describes the validity of
a specific group of attributes.

In cell XFs:

	flag==0 means the attributes of the parent style XF are
used, (but only if the attributes are valid there);

	flag==1 means the attributes of this XF are used.

In style XFs:

	flag==0 means the attribute setting is valid;

	flag==1 means the attribute should be ignored.

Note

the API provides both “raw” XFs and “computed” XFs. In the latter case,
cell XFs have had the above inheritance mechanism applied.

New in version 0.6.1.

	
alignment = None

	An instance of an XFAlignment object.

	
background = None

	An instance of an XFBackground object.

	
border = None

	An instance of an XFBorder object.

	
font_index = 0

	Index into font_list

	
format_key = 0

	Key into format_map

Warning

OOo docs on the XF record call this “Index to FORMAT record”.
It is not an index in the Python sense. It is a key to a map.
It is true only for Excel 4.0 and earlier files
that the key into format_map from an XF instance
is the same as the index into format_list, and only
if the index is less than 164.

	
is_style = 0

	0 = cell XF, 1 = style XF

	
parent_style_index = 0

	Index into Book.xf_list of this XF’s style XF

style XF: 0xFFF

	Type:

	cell XF

	
protection = None

	An instance of an XFProtection object.

	
xf_index = 0

	Index into xf_list

	
class excelrd.formatting.XFAlignment

	A collection of the alignment and similar attributes of an XF record.
Items correspond to those in the Excel UI’s Format -> Cells -> Alignment tab.

New in version 0.6.1.

	
hor_align = 0

	section 6.115 (p 214) of OOo docs

	Type:

	Values

	
indent_level = 0

	A number in range(15).

	
rotation = 0

	section 6.115 (p 215) of OOo docs.

Note

file versions BIFF7 and earlier use the documented
orientation attribute; this will be mapped (without loss)
into rotation.

	Type:

	Values

	
shrink_to_fit = 0

	1 = shrink font size to fit text into cell.

	
text_direction = 0

	0 = according to context; 1 = left-to-right; 2 = right-to-left

	
text_wrapped = 0

	1 = text is wrapped at right margin

	
vert_align = 0

	section 6.115 (p 215) of OOo docs

	Type:

	Values

	
class excelrd.formatting.XFBackground

	A collection of the background-related attributes of an XF record.
Items correspond to those in the Excel UI’s Format -> Cells -> Patterns tab.

An explanations of “colour index” is given in The Palette; Colour Indexes.

New in version 0.6.1.

	
background_colour_index = 0

	See section 3.11 of the OOo docs.

	
fill_pattern = 0

	See section 3.11 of the OOo docs.

	
pattern_colour_index = 0

	See section 3.11 of the OOo docs.

	
class excelrd.formatting.XFBorder

	A collection of the border-related attributes of an XF record.
Items correspond to those in the Excel UI’s Format -> Cells -> Border tab.

An explanations of “colour index” is given in The Palette; Colour Indexes.

There are five line style attributes; possible values and the
associated meanings are:

0 = No line,
1 = Thin,
2 = Medium,
3 = Dashed,
4 = Dotted,
5 = Thick,
6 = Double,
7 = Hair,
8 = Medium dashed,
9 = Thin dash-dotted,
10 = Medium dash-dotted,
11 = Thin dash-dot-dotted,
12 = Medium dash-dot-dotted,
13 = Slanted medium dash-dotted.

The line styles 8 to 13 appear in BIFF8 files (Excel 97 and later) only.
For pictures of the line styles, refer to OOo docs s3.10 (p22)
“Line Styles for Cell Borders (BIFF3-BIFF8)”.</p>

New in version 0.6.1.

	
bottom_colour_index = 0

	The colour index for the cell’s bottom line

	
bottom_line_style = 0

	The line style for the cell’s bottom line

	
diag_colour_index = 0

	The colour index for the cell’s diagonal lines, if any

	
diag_down = 0

	1 = draw a diagonal from top left to bottom right

	
diag_line_style = 0

	The line style for the cell’s diagonal lines, if any

	
diag_up = 0

	1 = draw a diagonal from bottom left to top right

	
left_colour_index = 0

	The colour index for the cell’s left line

	
left_line_style = 0

	The line style for the cell’s left line

	
right_colour_index = 0

	The colour index for the cell’s right line

	
right_line_style = 0

	The line style for the cell’s right line

	
top_colour_index = 0

	The colour index for the cell’s top line

	
top_line_style = 0

	The line style for the cell’s top line

	
class excelrd.formatting.XFProtection

	A collection of the protection-related attributes of an XF record.
Items correspond to those in the Excel UI’s Format -> Cells -> Protection tab.
Note the OOo docs include the “cell or style” bit in this bundle of
attributes. This is incorrect; the bit is used in determining which bundles
to use.

New in version 0.6.1.

	
cell_locked = 0

	1 = Cell is prevented from being changed, moved, resized, or deleted
(only if the sheet is protected).

	
formula_hidden = 0

	1 = Hide formula so that it doesn’t appear in the formula bar when
the cell is selected (only if the sheet is protected).

	
excelrd.formatting.fmt_bracketed_sub(repl, string, count=0)

	Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the replacement repl.

	
excelrd.formatting.nearest_colour_index(colour_map, rgb, debug=0)

	General purpose function. Uses Euclidean distance.
So far used only for pre-BIFF8 WINDOW2 record.
Doesn’t have to be fast.
Doesn’t have to be fancy.

excelrd.formula

Module for parsing/evaluating Microsoft Excel formulas.

	
class excelrd.formula.Operand(akind=None, avalue=None, arank=0, atext='?')

	Used in evaluating formulas.
The following table describes the kinds and how their values
are represented.

	Kind symbol
	Kind number
	Value representation

	oBOOL
	3
	integer: 0 => False; 1 => True

	oERR
	4
	None, or an int error code (same as XL_CELL_ERROR in the Cell class).

	oMSNG
	5
	Used by Excel as a placeholder for a missing (not supplied) function
argument. Should *not* appear as a final formula result. Value is None.

	oNUM
	2
	A float. Note that there is no way of distinguishing dates.

	oREF
	-1
	The value is either None or a non-empty list of
absolute Ref3D instances.

 Development

Development

Building the documentation

The Sphinx documentation is built by doing the following, having activated
the virtualenv above, from the directory containing setup.py:

$ cd docs
$ make html

 Changes

Changes

1.2.0 (15 December 2018)

	Added support for Python 3.7.

	Added optional support for defusedxml to help mitigate exploits.

	Automatically convert ~ in file paths to the current user’s home
directory.

	Removed examples directory from the installed package. They are still
available in the source distribution.

	Fixed time.clock() deprecation warning.

1.1.0 (22 August 2017)

	Fix for parsing of merged cells containing a single cell reference in xlsx
files.

	Fix for “invalid literal for int() with base 10: ‘true’” when reading some
xlsx files.

	Make xldate_as_datetime available to import direct from xlrd.

	Build universal wheels.

	Sphinx documentation.

	Document the problem with XML vulnerabilities in xlsx files and mitigation
measures.

	Fix NameError on has_defaults is not defined.

	Some whitespace and code style tweaks.

	Make example in README compatible with both Python 2 and 3.

	Add default value for cells containing errors that causeed parsing of some
xlsx files to fail.

	Add Python 3.6 to the list of supported Python versions, drop 3.3 and 2.6.

	Use generator expressions to avoid unnecessary lists in memory.

	Document unicode encoding used in Excel files from Excel 97 onwards.

	Report hyperlink errors in R1C1 syntax.

Thanks to the following for their contributions to this release:

	icereval@gmail.com

	Daniel Rech

	Ville Skyttä

	Yegor Yefremov

	Maxime Lorant

	Alexandr N Zamaraev

	Zhaorong Ma

	Jon Dufresne

	Chris McIntyre

	coltleese@gmail.com

	Ivan Masá

1.0.0 (2 June 2016)

	Official support, such as it is, is now for 2.6, 2.7, 3.3+

	Fixes a bug in looking up non-lowercase sheet filenames by ensuring that the
sheet targets are transformed the same way as the component_names dict keys.

	Fixes a bug for ragged_rows=False when merged cells increases the number
of columns in the sheet. This requires all rows to be extended to ensure equal
row lengths that match the number of columns in the sheet.

	Fixes to enable reading of SAP-generated .xls files.

	support BIFF4 files with missing FORMAT records.

	support files with missing WINDOW2 record.

	Empty cells are now always unicode strings, they were a bytestring on
Python 2 and a unicode string on Python 3.

	Fix for <cell> inlineStr attribute without <si> child.

	Fix for a zoom of None causing problems on Python 3.

	Fix parsing of bad dimensions.

	Fix xlsx sheet to comments relationship.

Thanks to the following for their contributions to this release:

	Lars-Erik Hannelius

	Deshi Xiao

	Stratos Moro

	Volker Diels-Grabsch

	John McNamara

	Ville Skyttä

	Patrick Fuller

	Dragon Dave McKee

	Gunnlaugur Þór Briem

0.9.4 (14 July 2015)

	Automated tests are now run on Python 3.4

	Use ElementTree.iter() if available, instead of the deprecated
getiterator() when parsing xlsx files.

	Fix #106 : Exception Value: unorderable types: Name() < Name()

	Create row generator expression with Sheet.get_rows()

	Fix for forward slash file separator and lowercase names within xlsx
internals.

Thanks to the following for their contributions to this release:

	Corey Farwell

	Jonathan Kamens

	Deepak N

	Brandon R. Stoner

	John McNamara

0.9.3 (8 Apr 2014)

	Github issue #49

	Github issue #64 - skip meaningless chunk of 4 zero bytes between two
otherwise-valid BIFF records

	Github issue #61 - fix updating of escapement attribute of Font objects read
from workbooks.

	Implemented Sheet.visibility for xlsx files

	Ignore anchors ($) in cell references

	Dropped support for Python 2.5 and earlier, Python 2.6 is now the earliest
Python release supported

	Read xlsx merged cell elements.

	Read cell comments in .xlsx files.

	Added xldate_as_datetime() function to convert from Excel
serial date/time to datetime.datetime object.

Thanks to the following for their contributions to this release:

	John Machin

	Caleb Epstein

	Martin Panter

	John McNamara

	Gunnlaugur Þór Briem

	Stephen Lewis

0.9.2 (9 Apr 2013)

	Fix some packaging issues that meant docs and examples were missing from the tarball.

	Fixed a small but serious regression that caused problems opening .xlsx files.

0.9.1 (5 Apr 2013)

	Many fixes bugs in Python 3 support.

	Fix bug where ragged rows needed fixing when formatting info was being parsed.

	Improved handling of aberrant Excel 4.0 Worksheet files.

	Various bug fixes.

	Simplify a lot of the distribution packaging.

	Remove unused and duplicate imports.

Thanks to the following for their contributions to this release:

	Thomas Kluyver

0.9.0 (31 Jan 2013)

	Support for Python 3.2+

	Many new unit test added.

	Continuous integration tests are now run.

	Various bug fixes.

Special thanks to Thomas Kluyver and Martin Panter for their work on
Python 3 compatibility.

Thanks to Manfred Moitzi for re-licensing his unit tests so we could include
them.

Thanks to the following for their contributions to this release:

	“holm”

	Victor Safronovich

	Ross Jones

0.8.0 (22 Aug 2012)

	More work-arounds for broken source files.

	Support for reading .xlsx files.

	Drop support for Python 2.5 and older.

0.7.8 (7 June 2012)

	Ignore superfluous zero bytes at end of xls OBJECT record.

	Fix assertion error when reading file with xlwt-written bitmap.

0.7.7 (13 Apr 2012)

	More packaging changes, this time to support 2to3.

0.7.6 (3 Apr 2012)

	Fix more packaging issues.

0.7.5 (3 Apr 2012)

	Fix packaging issue that missed version.txt from the distributions.

0.7.4 (2 Apr 2012)

	More tolerance of out-of-spec files.

	Fix bugs reading long text formula results.

0.7.3 (28 Feb 2012)

	Packaging and documentation updates.

0.7.2 (21 Feb 2012)

	Tolerant handling of files with extra zero bytes at end of NUMBER record.
Sample provided by Jan Kraus.

	Added access to cell notes/comments. Many cross-references added to Sheet
class docs.

	Added code to extract hyperlink (HLINK) records. Based on a patch supplied by
John Morrisey.

	Extraction of rich text formatting info based on code supplied by
Nathan van Gheem.

	added handling of BIFF2 WINDOW2 record.

	Included modified version of page breaks patch from Sam Listopad.

	Added reading of the PANE record.

	Reading SCL record. New attribute Sheet.scl_mag_factor.

	Lots of bug fixes.

	Added ragged_rows functionality.

0.7.1 (31 May 2009)

	Backed out “slash’n’burn” of sheet resources in unload_sheet().
Fixed problem with STYLE records on some Mac Excel files.

	quieten warnings

	Integrated on_demand patch by Armando Serrano Lombillo

0.7.0 (11 March 2009)

	colname utility function now supports more than 256 columns.

	Fix bug where BIFF record type 0x806 was being regarded as a formula
opcode.

	Ignore PALETTE record when formatting_info is false.

	Tolerate up to 4 bytes trailing junk on PALETTE record.

	Fixed bug in unused utility function xldate_from_date_tuple which
affected some years after 2099.

	Added code for inspecting as-yet-unused record types: FILEPASS, TXO,
NOTE.

	Added inspection code for add_in function calls.

	Added support for unnumbered biff_dump (better for doing diffs).

	ignore distutils cruft

	Avoid assertion error in compdoc when -1 used instead of -2 for
first_SID of empty SCSS

	Make version numbers match up.

	Enhanced recovery from out-of-order/missing/wrong CODEPAGE record.

	Added Name.area2d convenience method.

	Avoided some checking of XF info when formatting_info is false.

	Minor changes in preparation for XLSX support.

	remove duplicate files that were out of date.

	Basic support for Excel 2.0

	Decouple Book init & load.

	runxlrd: minor fix for xfc.

	More Excel 2.x work.

	is_date_format() tweak.

	Better detection of IronPython.

	Better error message (including first 8 bytes of file) when file is
not in a supported format.

	More BIFF2 formatting: ROW, COLWIDTH, and COLUMNDEFAULT records;

	finished stage 1 of XF records.

	More work on supporting BIFF2 (Excel 2.x) files.

	Added support for Excel 2.x (BIFF2) files. Data only, no formatting
info. Alpha.

	Wasn’t coping with EXTERNSHEET record followed by CONTINUE
record(s).

	Allow for BIFF2/3-style FORMAT record in BIFF4/8 file

	Avoid crash when zero-length Unicode string missing options byte.

	Warning message if sector sizes are extremely large.

	Work around corrupt STYLE record

	Added missing entry for blank cell type to ctype_text

	Added “fonts” command to runxlrd script

	Warning: style XF whose parent XF index != 0xFFF

	Logfile arg wasn’t being passed from open_workbook to
compdoc.CompDoc.

0.6.1 (10 June 2007)

	Version number updated to 0.6.1

	Documented runxlrd.py commands in its usage message. Changed
commands: dump to biff_dump, count_records to biff_count.

0.6.1a5

	Bug fixed: Missing “<” in a struct.unpack call means can’t open
files on bigendian platforms. Discovered by “Mihalis”.

	Removed antique undocumented Book.get_name_dict method and
experimental “trimming” facility.

	Meaningful exception instead of IndexError if a SAT (sector
allocation table) is corrupted.

	If no CODEPAGE record in pre-8.0 file, assume ascii and keep going
(instead of raising exception).

0.6.1a4

	At least one source of XLS files writes parent style XF records
after the child cell XF records that refer to them, triggering
IndexError in 0.5.2 and AssertionError in later versions. Reported
with sample file by Todd O’Bryan. Fixed by changing to two-pass
processing of XF records.

	Formatting info in pre-BIFF8 files: Ensured appropriate defaults and
lossless conversions to make the info BIFF8-compatible. Fixed bug in
extracting the “used” flags.

	Fixed problems discovered with opening test files from Planmaker
2006 (http://www.softmaker.com/english/ofwcomp_en.htm): (1) Four files
have reduced size of PALETTE record (51 and 32 colours; Excel writes
56 always). xlrd now emits a NOTE to the logfile and continues. (2)
FORMULA records use the Excel 2.x record code 0x0021 instead of
0x0221. xlrd now continues silently. (3) In two files, at the OLE2
compound document level, the internal directory says that the length
of the Short-Stream Container Stream is 16384 bytes, but the actual
contents are 11264 and 9728 bytes respectively. xlrd now emits a
WARNING to the logfile and continues.

	After discussion with Daniel Rentz, the concept of two lists of XF
(eXtended Format) objects (raw_xf_list and computed_xf_list) has been
abandoned. There is now a single list, called xf_list

0.6.1a3

	Added Book.sheets … for sheetx, sheet in enumerate(book.sheets):

	Formatting info: extraction of sheet-level flags from WINDOW2
record, and sheet.visibility from BOUNDSHEET record. Added Macintosh-
only Font attributes “outline” and “shadow’.

0.6.1a2

	Added extraction of merged cells info.

	pyExcelerator uses “general” instead of “General” for the generic
“number format”. Worked around.

	Crystal Reports writes “WORKBOOK” in the OLE2 Compound Document
directory instead of “Workbook”. Changed to case-insensitive directory
search. Reported by Vic Simkus.

0.6.1a1 (18 Dec 2006)

	Added formatting information for cells (font, “number format”,
background, border, alignment and protection) and rows/columns
(height/width etc). To save memory and time for those who don’t need
it, this information is extracted only if formatting_info=1 is
supplied to the open_workbook() function. The cell records BLANK and
MULBLANKS which contain no data, only formatting information, will
continue to be ignored in the default (no formatting info) case.

	Ralph Heimburger reported a problem with xlrd being intolerant about
an Excel 4.0 file (created by “some web app”) with a DIMENSIONS record
that omitted Microsoft’s usual padding with 2 unused bytes. Fixed.

0.6.0a4 (not released)

	Added extraction of human-readable formulas from NAME records.

	Worked around OOo Calc writing 9-byte BOOLERR records instead of 8.
Reported by Rory Campbell-Lange.

	This history file converted to descending chronological order and
HTML format.

0.6.0a3 (19 Sept 2006)

	Names: minor bugfixes; added script xlrdnameAPIdemo.py

	ROW records were being used as additional hints for sizing memory
requirements. In some files the ROW records overstate the number of
used columns, and/or there are ROW records for rows that have no data
in them. This would cause xlrd to report sheet.ncols and/or
sheet.nrows as larger than reasonably expected. Change: ROW records
are ignored. The number of columns/rows is based solely on the highest
column/row index seen in non-empty data records. Empty data records
(types BLANK and MULBLANKS) which contain no data, only formatting
information, have always been ignored, and this will continue.
Consequence: trailing rows and columns which contain only empty cells
will vanish.

0.6.0a2 (13 Sept 2006)

	Fixed a bug reported by Rory Campbell-Lange.: “open failed”;
incorrect assumptions about the layout of array formulas which return
strings.

	Further work on defined names, especially the API.

0.6.0a1 (8 Sept 2006)

	Sheet objects have two new convenience methods: col_values(colx,
start_rowx=0, end_rowx=None) and the corresponding col_types.
Suggested by Dennis O’Brien.

	BIFF 8 file missing its CODEPAGE record: xlrd will now assume
utf_16_le encoding (the only possibility) and keep going.

	Older files missing a CODEPAGE record: an exception will be raised.
Thanks to Sergey Krushinsky for a sample file. The open_workbook()
function has a new argument (encoding_override) which can be used if
the CODEPAGE record is missing or incorrect (for example,
codepage=1251 but the data is actually encoded in koi8_r). The
runxlrd.py script takes a corresponding -e argument, for example -e
cp1251

	Further work done on parsing “number formats”. Thanks to Chris
Withers for the "General_)" example.

	Excel 97 introduced the concept of row and column labels, defined by
Insert > Name > Labels. The ranges containing the labels are now
exposed as the Sheet attributes row_label_ranges and col_label_ranges.

	The major effort in this 0.6.0 release has been the provision of
access to named cell ranges and named constants (Excel:
Insert/Name/Define). Juan C. Mendez provided very useful real-world
sample files.

0.5.3a1 (24 May 2006)

	John Popplewell and Richard Sharp provided sample files which caused
any reliance at all on DIMENSIONS records and ROW records to be
abandoned.

	If the file size is not a whole number of OLE sectors, a warning
message is logged. Previously this caused an exception to be raised.

0.5.2 (14 March 2006)

	public release

	Updated version numbers, README, HISTORY.

0.5.2a3 (13 March 2006)

	Gnumeric writes user-defined formats with format codes starting at
50 instead of 164; worked around.

	Thanks to Didrik Pinte for reporting the need for xlrd to be more
tolerant of the idiosyncrasies of other software, for supplying sample
files, and for performing alpha testing.

	‘_’ character in a format should be treated like an escape
character; fixed.

	An “empty” formula result means a zero-length string, not an empty
cell! Fixed.

0.5.2a2 (9 March 2006)

	Found that Gnumeric writes all DIMENSIONS records with nrows and
ncols each 1 less than they should be (except when it clamps ncols at
256!), and pyXLwriter doesn’t write ROW records. Cell memory pre-
allocation was generalised to use ROW records if available with fall-
back to DIMENSIONS records.

0.5.2a1 (6 March 2006)

	pyXLwriter writes DIMENSIONS record with antique opcode 0x0000
instead of 0x0200; worked around

	A file written by Gnumeric had zeroes in DIMENSIONS record but data
in cell A1; worked around

0.5.1 (18 Feb 2006)

	released to Journyx

	Python 2.1 mmap requires file to be opened for update access. Added
fall-back to read-only access without mmap if 2.1 open fails because
“permission denied”.

0.5 (7 Feb 2006)

	released to Journyx

	Now works with Python 2.1. Backporting to Python 2.1 was partially
funded by Journyx - provider of timesheet and project accounting
solutions (http://journyx.com/)

	open_workbook() can be given the contents of a file instead of its
name. Thanks to Remco Boerma for the suggestion.

	New module attribute __VERSION__ (as a string; for example “0.5”)

	Minor enhancements to classification of formats as date or not-date.

	Added warnings about files with inconsistent OLE compound document
structures. Thanks to Roman V. Kiseliov (author of pyExcelerator) for
the tip-off.

0.4a1, (7 Sept 2005)

	released to Laurent T.

	Book and sheet objects can now be pickled and unpickled. Instead of
reading a large spreadsheet multiple times, consider pickling it once
and loading the saved pickle; can be much faster. Thanks to Laurent
Thioudellet for the enhancement request.

	Using the mmap module can be turned off. But you would only do that
for benchmarking purposes.

	Handling NUMBER records has been made faster

0.3a1 (15 May 2005)

	first public release

 Acknowledgements

Acknowledgements

Development of this package would not have been possible without the document
OpenOffice.org’s Documentation of the Microsoft Excel File Format”
(“OOo docs” for short).
The latest version is available from OpenOffice.org in
PDF format [http://sc.openoffice.org/excelfileformat.pdf] and ODT format [http://sc.openoffice.org/excelfileformat.odt].
Small portions of the OOo docs are reproduced in this
document. A study of the OOo docs is recommended for those who wish a
deeper understanding of the Excel file layout than the excelrd docs can provide.

Backporting to Python 2.1 was partially funded by
Journyx - provider of timesheet and project accounting solutions [http://journyx.com/].

Provision of formatting information in version 0.6.1 was funded by
Simplistix Ltd [http://www.simplistix.co.uk].

 Licenses

Licenses

There are two licenses associated with xlrd. This one relates to the bulk of
the work done on the library::

 Portions copyright © 2005-2009, Stephen John Machin, Lingfo Pty Ltd
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

 3. None of the names of Stephen John Machin, Lingfo Pty Ltd and any
 contributors may be used to endorse or promote products derived from this
 software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
 BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 THE POSSIBILITY OF SUCH DAMAGE.

This one covers some earlier work::

 /*-
 * Copyright (c) 2001 David Giffin.
 * All rights reserved.
 *
 * Based on the the Java version: Andrew Khan Copyright (c) 2000.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by
 * David Giffin <david@giffin.org>."
 *
 * 4. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by
 * David Giffin <david@giffin.org>."
 *
 * THIS SOFTWARE IS PROVIDED BY DAVID GIFFIN ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DAVID GIFFIN OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 */

 Python Module Index

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 excelrd	

 	
 	
 excelrd.biffh	

 	
 	
 excelrd.book	

 	
 	
 excelrd.compdoc	

 	
 	
 excelrd.formatting	

 	
 	
 excelrd.formula	

 	
 	
 excelrd.sheet	

 	
 	
 excelrd.xldate	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	additional_space_above (excelrd.sheet.Rowinfo attribute)

 	additional_space_below (excelrd.sheet.Rowinfo attribute)

 	
 	alignment (excelrd.formatting.XF attribute)

 	area2d() (excelrd.book.Name method)

 	author (excelrd.sheet.Note attribute)

B

 	
 	background (excelrd.formatting.XF attribute)

 	background_colour_index (excelrd.formatting.XFBackground attribute)

 	BaseObject (class in excelrd.biffh)

 	biff_version (excelrd.book.Book attribute)

 	binary (excelrd.book.Name attribute)

 	bit1_flag (excelrd.sheet.Colinfo attribute)

 	
 	bold (excelrd.formatting.Font attribute)

 	Book (class in excelrd.book)

 	book (excelrd.sheet.Sheet attribute)

 	border (excelrd.formatting.XF attribute)

 	bottom_colour_index (excelrd.formatting.XFBorder attribute)

 	bottom_line_style (excelrd.formatting.XFBorder attribute)

 	builtin (excelrd.book.Name attribute)

C

 	
 	Cell (class in excelrd.sheet)

 	cell() (excelrd.book.Name method)

 	(excelrd.sheet.Sheet method)

 	cell_locked (excelrd.formatting.XFProtection attribute)

 	cell_note_map (excelrd.sheet.Sheet attribute)

 	cell_type() (excelrd.sheet.Sheet method)

 	cell_value() (excelrd.sheet.Sheet method)

 	cell_xf_index() (excelrd.sheet.Sheet method)

 	cellname() (in module excelrd.formula)

 	cellnameabs() (in module excelrd.formula)

 	character_set (excelrd.formatting.Font attribute)

 	codepage (excelrd.book.Book attribute)

 	col() (excelrd.sheet.Sheet method)

 	col_hidden (excelrd.sheet.Note attribute)

 	col_label_ranges (excelrd.sheet.Sheet attribute)

 	
 	col_slice() (excelrd.sheet.Sheet method)

 	col_types() (excelrd.sheet.Sheet method)

 	col_values() (excelrd.sheet.Sheet method)

 	Colinfo (class in excelrd.sheet)

 	colinfo_map (excelrd.sheet.Sheet attribute)

 	collapsed (excelrd.sheet.Colinfo attribute)

 	colname() (in module excelrd.formula)

 	colour_index (excelrd.formatting.Font attribute)

 	colour_map (excelrd.book.Book attribute)

 	colx (excelrd.sheet.Note attribute)

 	CompDoc (class in excelrd.compdoc)

 	CompDocError

 	complex (excelrd.book.Name attribute)

 	computed_column_width() (excelrd.sheet.Sheet method)

 	count_records() (in module excelrd)

 	countries (excelrd.book.Book attribute)

D

 	
 	datemode (excelrd.book.Book attribute)

 	default_additional_space_above (excelrd.sheet.Sheet attribute)

 	default_additional_space_below (excelrd.sheet.Sheet attribute)

 	default_row_height (excelrd.sheet.Sheet attribute)

 	default_row_height_mismatch (excelrd.sheet.Sheet attribute)

 	default_row_hidden (excelrd.sheet.Sheet attribute)

 	defcolwidth (excelrd.sheet.Sheet attribute)

 	
 	desc (excelrd.sheet.Hyperlink attribute)

 	diag_colour_index (excelrd.formatting.XFBorder attribute)

 	diag_down (excelrd.formatting.XFBorder attribute)

 	diag_line_style (excelrd.formatting.XFBorder attribute)

 	diag_up (excelrd.formatting.XFBorder attribute)

 	dump() (excelrd.biffh.BaseObject method)

 	(in module excelrd)

E

 	
 	encoding (excelrd.book.Book attribute)

 	EqNeAttrs (class in excelrd.formatting)

 	error_text_from_code (in module excelrd.biffh)

 	escapement (excelrd.formatting.Font attribute)

 	
 excelrd

 	module

 	
 excelrd.biffh

 	module

 	
 excelrd.book

 	module

 	
 	
 excelrd.compdoc

 	module

 	
 excelrd.formatting

 	module

 	
 excelrd.formula

 	module

 	
 excelrd.sheet

 	module

 	
 excelrd.xldate

 	module

F

 	
 	family (excelrd.formatting.Font attribute)

 	fcolx (excelrd.sheet.Hyperlink attribute)

 	fill_pattern (excelrd.formatting.XFBackground attribute)

 	fmt_bracketed_sub() (in module excelrd.formatting)

 	Font (class in excelrd.formatting)

 	font_index (excelrd.formatting.Font attribute)

 	(excelrd.formatting.XF attribute)

 	font_list (excelrd.book.Book attribute)

 	Format (class in excelrd.formatting)

 	
 	format_key (excelrd.formatting.Format attribute)

 	(excelrd.formatting.XF attribute)

 	format_list (excelrd.book.Book attribute)

 	format_map (excelrd.book.Book attribute)

 	format_str (excelrd.formatting.Format attribute)

 	formula_hidden (excelrd.formatting.XFProtection attribute)

 	frowx (excelrd.sheet.Hyperlink attribute)

 	func (excelrd.book.Name attribute)

 	funcgroup (excelrd.book.Name attribute)

G

 	
 	gcw (excelrd.sheet.Sheet attribute)

 	
 	get_named_stream() (excelrd.compdoc.CompDoc method)

 	get_rows() (excelrd.sheet.Sheet method)

H

 	
 	has_default_height (excelrd.sheet.Rowinfo attribute)

 	has_default_xf_index (excelrd.sheet.Rowinfo attribute)

 	has_pane_record (excelrd.sheet.Sheet attribute)

 	height (excelrd.formatting.Font attribute)

 	(excelrd.sheet.Rowinfo attribute)

 	height_mismatch (excelrd.sheet.Rowinfo attribute)

 	hidden (excelrd.book.Name attribute)

 	(excelrd.sheet.Colinfo attribute)

 	(excelrd.sheet.Rowinfo attribute)

 	
 	hor_align (excelrd.formatting.XFAlignment attribute)

 	horizontal_page_breaks (excelrd.sheet.Sheet attribute)

 	horz_split_first_visible (excelrd.sheet.Sheet attribute)

 	horz_split_pos (excelrd.sheet.Sheet attribute)

 	Hyperlink (class in excelrd.sheet)

 	hyperlink_list (excelrd.sheet.Sheet attribute)

 	hyperlink_map (excelrd.sheet.Sheet attribute)

I

 	
 	indent_level (excelrd.formatting.XFAlignment attribute)

 	
 	is_style (excelrd.formatting.XF attribute)

 	italic (excelrd.formatting.Font attribute)

K

 	
 	kind (excelrd.formula.Operand attribute)

L

 	
 	lcolx (excelrd.sheet.Hyperlink attribute)

 	left_colour_index (excelrd.formatting.XFBorder attribute)

 	left_line_style (excelrd.formatting.XFBorder attribute)

 	
 	load_time_stage_1 (excelrd.book.Book attribute)

 	load_time_stage_2 (excelrd.book.Book attribute)

 	locate_named_stream() (excelrd.compdoc.CompDoc method)

 	lrowx (excelrd.sheet.Hyperlink attribute)

M

 	
 	macro (excelrd.book.Name attribute)

 	merged_cells (excelrd.sheet.Sheet attribute)

 	
 module

 	excelrd

 	excelrd.biffh

 	excelrd.book

 	excelrd.compdoc

 	excelrd.formatting

 	excelrd.formula

 	excelrd.sheet

 	excelrd.xldate

 	
 	MSObj (class in excelrd.sheet)

 	MSODrawing (class in excelrd.sheet)

 	MSTxo (class in excelrd.sheet)

N

 	
 	Name (class in excelrd.book)

 	name (excelrd.formatting.Font attribute)

 	(excelrd.sheet.Sheet attribute)

 	name_and_scope_map (excelrd.book.Book attribute)

 	name_index (excelrd.book.Name attribute)

 	name_map (excelrd.book.Book attribute)

 	
 	name_obj_list (excelrd.book.Book attribute)

 	ncols (excelrd.sheet.Sheet attribute)

 	nearest_colour_index() (in module excelrd.formatting)

 	Note (class in excelrd.sheet)

 	nrows (excelrd.sheet.Sheet attribute)

 	nsheets (excelrd.book.Book attribute)

O

 	
 	open_workbook() (in module excelrd)

 	Operand (class in excelrd.formula)

 	outline (excelrd.formatting.Font attribute)

 	
 	outline_group_starts_ends (excelrd.sheet.Rowinfo attribute)

 	outline_level (excelrd.sheet.Colinfo attribute)

 	(excelrd.sheet.Rowinfo attribute)

P

 	
 	palette_record (excelrd.book.Book attribute)

 	parent_style_index (excelrd.formatting.XF attribute)

 	
 	pattern_colour_index (excelrd.formatting.XFBackground attribute)

 	protection (excelrd.formatting.XF attribute)

Q

 	
 	quicktip (excelrd.sheet.Hyperlink attribute)

R

 	
 	rangename3d() (in module excelrd.formula)

 	rangename3drel() (in module excelrd.formula)

 	raw_formula (excelrd.book.Name attribute)

 	Ref3D (class in excelrd.formula)

 	release_resources() (excelrd.book.Book method)

 	rich_text_runlist (excelrd.sheet.Note attribute)

 	rich_text_runlist_map (excelrd.sheet.Sheet attribute)

 	right_colour_index (excelrd.formatting.XFBorder attribute)

 	right_line_style (excelrd.formatting.XFBorder attribute)

 	rotation (excelrd.formatting.XFAlignment attribute)

 	
 	row() (excelrd.sheet.Sheet method)

 	row_hidden (excelrd.sheet.Note attribute)

 	row_label_ranges (excelrd.sheet.Sheet attribute)

 	row_len() (excelrd.sheet.Sheet method)

 	row_slice() (excelrd.sheet.Sheet method)

 	row_types() (excelrd.sheet.Sheet method)

 	row_values() (excelrd.sheet.Sheet method)

 	Rowinfo (class in excelrd.sheet)

 	rowinfo_map (excelrd.sheet.Sheet attribute)

 	rowx (excelrd.sheet.Note attribute)

S

 	
 	scope (excelrd.book.Name attribute)

 	shadow (excelrd.formatting.Font attribute)

 	Sheet (class in excelrd.sheet)

 	sheet_by_index() (excelrd.book.Book method)

 	sheet_by_name() (excelrd.book.Book method)

 	sheet_loaded() (excelrd.book.Book method)

 	sheet_names() (excelrd.book.Book method)

 	
 	sheets() (excelrd.book.Book method)

 	show (excelrd.sheet.Note attribute)

 	shrink_to_fit (excelrd.formatting.XFAlignment attribute)

 	SIGNATURE (in module excelrd.compdoc)

 	split_active_pane (excelrd.sheet.Sheet attribute)

 	standardwidth (excelrd.sheet.Sheet attribute)

 	struck_out (excelrd.formatting.Font attribute)

 	style_name_map (excelrd.book.Book attribute)

T

 	
 	target (excelrd.sheet.Hyperlink attribute)

 	text (excelrd.formula.Operand attribute)

 	(excelrd.sheet.Note attribute)

 	text_direction (excelrd.formatting.XFAlignment attribute)

 	text_wrapped (excelrd.formatting.XFAlignment attribute)

 	
 	textmark (excelrd.sheet.Hyperlink attribute)

 	top_colour_index (excelrd.formatting.XFBorder attribute)

 	top_line_style (excelrd.formatting.XFBorder attribute)

 	type (excelrd.formatting.Format attribute)

 	(excelrd.sheet.Hyperlink attribute)

U

 	
 	underline_type (excelrd.formatting.Font attribute)

 	underlined (excelrd.formatting.Font attribute)

 	unload_sheet() (excelrd.book.Book method)

 	unpack_SST_table() (in module excelrd.book)

 	
 	unpack_unicode() (in module excelrd.biffh)

 	unpack_unicode_update_pos() (in module excelrd.biffh)

 	url_or_path (excelrd.sheet.Hyperlink attribute)

 	user_name (excelrd.book.Book attribute)

V

 	
 	value (excelrd.formula.Operand attribute)

 	vbasic (excelrd.book.Name attribute)

 	vert_align (excelrd.formatting.XFAlignment attribute)

 	
 	vert_split_first_visible (excelrd.sheet.Sheet attribute)

 	vert_split_pos (excelrd.sheet.Sheet attribute)

 	vertical_page_breaks (excelrd.sheet.Sheet attribute)

 	visibility (excelrd.sheet.Sheet attribute)

W

 	
 	weight (excelrd.formatting.Font attribute)

 	
 	width (excelrd.sheet.Colinfo attribute)

X

 	
 	XF (class in excelrd.formatting)

 	xf_index (excelrd.formatting.XF attribute)

 	(excelrd.sheet.Colinfo attribute)

 	(excelrd.sheet.Rowinfo attribute)

 	xf_list (excelrd.book.Book attribute)

 	XFAlignment (class in excelrd.formatting)

 	XFBackground (class in excelrd.formatting)

 	XFBorder (class in excelrd.formatting)

 	XFProtection (class in excelrd.formatting)

 	xldate_as_datetime() (in module excelrd.xldate)

 	
 	xldate_as_tuple() (in module excelrd.xldate)

 	xldate_from_date_tuple() (in module excelrd.xldate)

 	xldate_from_datetime_tuple() (in module excelrd.xldate)

 	xldate_from_time_tuple() (in module excelrd.xldate)

 	XLDateAmbiguous

 	XLDateBadDatemode

 	XLDateBadTuple

 	XLDateError

 	XLDateNegative

 	XLDateTooLarge

 	XLRDError

nav.xhtml

 Table of Contents

 		
 excelrd documentation

 		
 Handling of Unicode

 		
 Dates in Excel spreadsheets

 		
 Named references, constants, formulas, and macros

 		
 Formatting information in Excel Spreadsheets

 		
 Introduction

 		
 The Palette; Colour Indexes

 		
 Default Formatting

 		
 Formatting features not included in excelrd

 		
 Loading worksheets on demand

 		
 XML vulnerabilities and Excel files

 		
 API Reference

 		
 excelrd

 		
 count_records()

 		
 dump()

 		
 open_workbook()

 		
 excelrd.biffh

 		
 BaseObject

 		
 XLRDError

 		
 error_text_from_code

 		
 unpack_unicode()

 		
 unpack_unicode_update_pos()

 		
 excelrd.book

 		
 Book

 		
 Name

 		
 unpack_SST_table()

 		
 excelrd.compdoc

 		
 CompDoc

 		
 CompDocError

 		
 SIGNATURE

 		
 excelrd.formatting

 		
 EqNeAttrs

 		
 Font

 		
 Format

 		
 XF

 		
 XFAlignment

 		
 XFBackground

 		
 XFBorder

 		
 XFProtection

 		
 fmt_bracketed_sub()

 		
 nearest_colour_index()

 		
 excelrd.formula

 		
 Operand

 		
 Ref3D

 		
 cellname()

 		
 cellnameabs()

 		
 colname()

 		
 rangename3d()

 		
 rangename3drel()

 		
 excelrd.sheet

 		
 Sheet

 		
 Cell

 		
 Colinfo

 		
 Hyperlink

 		
 MSODrawing

 		
 MSObj

 		
 MSTxo

 		
 Note

 		
 Rowinfo

 		
 excelrd.xldate

 		
 XLDateAmbiguous

 		
 XLDateBadDatemode

 		
 XLDateBadTuple

 		
 XLDateError

 		
 XLDateNegative

 		
 XLDateTooLarge

 		
 xldate_as_datetime()

 		
 xldate_as_tuple()

 		
 xldate_from_date_tuple()

 		
 xldate_from_datetime_tuple()

 		
 xldate_from_time_tuple()

 		
 Development

 		
 Building the documentation

 		
 Changes

 		
 1.2.0 (15 December 2018)

 		
 1.1.0 (22 August 2017)

 		
 1.0.0 (2 June 2016)

 		
 0.9.4 (14 July 2015)

 		
 0.9.3 (8 Apr 2014)

 		
 0.9.2 (9 Apr 2013)

 		
 0.9.1 (5 Apr 2013)

 		
 0.9.0 (31 Jan 2013)

 		
 0.8.0 (22 Aug 2012)

 		
 0.7.8 (7 June 2012)

 		
 0.7.7 (13 Apr 2012)

 		
 0.7.6 (3 Apr 2012)

 		
 0.7.5 (3 Apr 2012)

 		
 0.7.4 (2 Apr 2012)

 		
 0.7.3 (28 Feb 2012)

 		
 0.7.2 (21 Feb 2012)

 		
 0.7.1 (31 May 2009)

 		
 0.7.0 (11 March 2009)

 		
 0.6.1 (10 June 2007)

 		
 0.6.1a5

 		
 0.6.1a4

 		
 0.6.1a3

 		
 0.6.1a2

 		
 0.6.1a1 (18 Dec 2006)

 		
 0.6.0a4 (not released)

 		
 0.6.0a3 (19 Sept 2006)

 		
 0.6.0a2 (13 Sept 2006)

 		
 0.6.0a1 (8 Sept 2006)

 		
 0.5.3a1 (24 May 2006)

 		
 0.5.2 (14 March 2006)

 		
 0.5.2a3 (13 March 2006)

 		
 0.5.2a2 (9 March 2006)

 		
 0.5.2a1 (6 March 2006)

 		
 0.5.1 (18 Feb 2006)

 		
 0.5 (7 Feb 2006)

 		
 0.4a1, (7 Sept 2005)

 		
 0.3a1 (15 May 2005)

 		
 Acknowledgements

 		
 Licenses

_static/file.png

_stat